

Knowns and Unknowns of the Use of Nitrogen Transformation Inhibitors

Unknowns

Andreas Pacholski¹, Urs Dippon-Deissler², Sondra Klitzke², Lisa Noll, Anne Biewald²

- 1 Thünen-Institute of Climate Smart Agricture, Bundesallee 65, 38116 Braunschweig, Germany 2 Federal Environment Agency, Wörlitzer Pl. 1, 06844 Dessau-Roßlau, Germany

Background

Fig 1: Mineral N transformations in soil influencing $N_2\text{O}$ and $NH_3\text{formation}$ and debated effects of nitrification and urease inhibitors

- Agriculture causes ~80% of total nitrous oxide (N₂O) and ~95% of ammonia (NH₃) emissions in Germany, to a considerable extent through the use of synthetic and organic fertilizer (Fig 1.).
- Nitrification (NI) and urease (UI) inhibitors and their combination (DI) intensively discussed to reduce nitrous oxide (N₂O, NI) and ammonia (NH₃, UI) emissions (Fig. 1), already implemented for emission reduction (UI in Germany, Denmark).
- Yields and fertilization efficiency can be increased.

Do we know enough for broad and longterm use of NI and UI for emission mitigation?

Existing Knowledge and Knowledge Gaps

Knowns

Emission mitigation and agronomic efficacy

- · Reduction of vegetation period N₂O emission by about 40% by NI (DMPP, DCD, Nitrpyrin)
- Reduction of NH₃ emission from urea and UAN by 60% by use of NBPT
- + yield and + NUE in meta-studies

Efficacy of several inhibitor compounds

- Effect on annual N₂O emission by NI and DI Reduction effect after
- long term application Yield effects under various cropping conditions

Knowns

Environmental fate/side effects

- Human uptake risk Decomposition and metabolites for some
- compounds (e.g. NBPT) · translocation with soil water for some compounds
 - Human / ecotoxicity labels

biochemical mode of action for most NI

- amounts of active ingredient use in agriculture not reported/monitored
- dose/response relationships
- Some compounds would not be eligible

Effect on soil fauna

Translocation of

unsaturated and

saturated zone

compounds in

Metabolites

Effect on soil microbial

community (long term)

- for approval under pesticide regulation Test data not available
- Existing risk ass ess ments / REACH not sufficient
- Laboratory test not sufficient to assess compound efficacy

Regulation and available data

- All compounds REACH registered / CLP label
- · All compounds with risk assessment
- · Laboratory efficacy test for compounds under new EU Fertilizer Regulation

Conclusions

- Use of (most) compounds for environmental mitigation policy not yet ready, assessment, use should be compound specific or definition of minimum efficacy
- Need for a clear agreement on assessment protocols for emission mitigation efficacy, also and in particular for long-term use
- International agreement on product assessment/regulation similar to biocides
- further research and data needed, also for biological inhibitors

Use / mode of action of active

registered in Germany / EU

• 9 NI and 3 UI compounds

· Functional mode of action

(MoA) for UI and NI

hinchemical MoAf or IIIs

NBPT, 2-NPT, NPPT/NBPT

ingredients

- Further reading
 Grados D. et al. (2022): Synthesizing the evidence of nitrous oxide mitigation
 practices in agreecosystems. Emiron. Res. Lett. 17 (11), 5. 114024
 Matse, DT et al. (2021): Field efficacy of urease inhibitors for mitigation of
 ammonia emissions in agricul to al field stellings, a systematic review. In Erost.
 Environ. Sci. 12, Artifiel 1462098, 5. 7 19. DOI: 10.33.89/fenvs.2024.1462098.
- Fan, D., et al. 2022. Global evaluation of inhibitor impacts on ammonia and nitrous oxide emission from agricultural soils: A meta-analysis. Glob. Change Biol. 28 (17), 5121–5141. 10.1111/gcb.16294
- From agricultural soits: A meta-analysis. Glob. Change Biol. 28 (17), 3121–314.1. 10.1111/gct. 16.
 Shang, Z. et al. (2020): Measu rement of N2O emissions over the whole year is necessary for estimating reliable emission factors. In: Environmental pollution (Barking, Essex: 1987) 259, S. 113864. DOI: 10.1016/j.envpol.2019.113864.

